A Robust Bearing Fault Detection and Diagnosis Technique for Brushless DC Motors Under Non-stationary Operating Conditions
نویسندگان
چکیده
Rolling element bearing defects are among the main reasons for the breakdown of electrical machines, and therefore, early diagnosis of these is necessary to avoid more catastrophic failure consequences. This paper presents a novel approach for identifying rolling element bearing defects in brushless DC motors under non-stationary operating conditions. Stator current and lateral vibration measurements are selected as fault indicators to extract meaningful features, using a discrete wavelet transform. These features are further reduced via the application of orthogonal fuzzy neighbourhood discriminative analysis.A recurrent neural network is then used to detect and classify the presence of bearing faults. The proposed system is implemented and tested in simulation on data collected from an experimental setup, to verify its effectiveness and reliability in accurately detecting and classifying the various faults.
منابع مشابه
Application of Signal Processing Tools for Fault Diagnosis in Induction Motors-A Review-Part II
The use of efficient signal processing tools (SPTs) to extract proper indices for the fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The 2nd part of this two-part paper is, in turn, divided into two parts. Part two covers the signal processing techniques which can be applied to non-stationary conditions. In this paper, all utilized SPTs for n...
متن کاملDetection of Rotor and Load Faults in Brushless Dc Motors Operating under Stationary and Non- Stationary Conditions
متن کامل
Low-Cost Fault Diagnosis Algorithm for Switch Open-Damage in BLDC Motor Drives
In this paper, a fault diagnosis algorithm for brushless DC (BLDC) motor drives is proposed to maintain control performance under switch open-damage. The proposed fault diagnosis algorithm consists of a simple algorithm using measured phase current information and it detects open-circuit faults based on the operating characteristic of BLDC motors. The proposed algorithm quickly recovers control...
متن کاملA Review of Application of Signal Processing Techniques for Fault Diagnosis of Induction Motors – Part I
Abstract - Use of efficient signal processing tools (SPTs) to extract proper indices for fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The Part1 of the two parts paper focuses on Fourier-based techniques including fast Fourier transform and short time Fourier transform. In this paper, all utilized SPTs which have been employed for fault fete...
متن کاملA Novel Fault Detection and Classification Approach in Transmission Lines Based on Statistical Patterns
Symmetrical nature of mean of electrical signals during normal operating conditions is used in the fault detection task for dependable, robust, and simple fault detector implementation is presented in this work. Every fourth cycle of the instantaneous current signal, the mean is computed and carried into the next cycle to discover nonlinearities in the signal. A fault detection task is complete...
متن کامل